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Abstract--In polycrystalline material, minerals with pronounced plastic anisotropy may experience inhomo- 
geneous.deformation and significant mechanical interaction between neighboring crystals. To study the effect of 
crystal interaction on preferred orientation, pure shear of a polycrystalline material with identical, orthogonal 
slip systems was modeled two-dimensionally by the finite-element method. Such a material is non-ductile in the 
formal yon Mises sense because it lacks five independent slip systems. As a result, each crystal has highly 
anisotropic strength. Because a homogeneous, irrotational strain history in a two-dimensional crystal with 
identical, orthogonal slip systems does not cause lattice rotation, rotation caused by crystal interaction is readily 
observed. In the finite-element models, slip planes rotate toward a preferred orientation parallel to maximum 
shear stress (45* to shortening and extension directions). Mechanical interaction between neighboring crystals 
produces this preferred orientation by rigid-body rotation of crystals or parts of crystals not favorably oriented 
for slip. 

INTRODUCTION 

MOST previous analyses of preferred orientation fabrics 
have assumed that crystals do not interact. The non- 
interacting crystal models that are most useful, and that 
are referred to in this paper, assume that each crystal in 
a polycrystalline material experiences the same strain 
(e.g. Taylor 1938, Lister et al. 1978). With this assump- 
tion, the dominant slip plane will rotate until it is normal 
to the axis of greatest shortening. If there are multiple 
slip systems with similar critical resolved shear stress, 
crystal axes will rotate to facilitate multiple slip in rota- 
tionally stable orientations (Lister et al. 1978, Lister & 
Paterson 1979, Lister & Williams 1979, Lister & Hobbs 
1980, Wagner et al. 1982, 1984). These models for 
preferred orientation of non-interacting crystals should 
be most accurate when strain is homogeneous (as 
assumed in the models cited above) or when unequally 
deformed grains can slip past one another (Etchecopar 
1977). The models are in good agreement with observed 
fabrics in both naturally and experimentally deformed 
quartz (e.g. Tullis et al. 1973, Bouchez 1977, Law et al. 
1984, Price 1985, Law 1986) and calcite (e.g. Knopf 
1949, Turner & Ch'ih 1951, Wenk et al. 1973, Rutter & 
Rusbridge 1977, Wagner et al. 1982, Wenk et al. 1986a,b, 
Takeshita et al. 1987); however, the models may not 
accurately characterize simple shear in quartz (Schmid 
& Casey 1986) nor pure axial deformation in calcite 
(Wenk et al. 1986a). 

Numerical models by Gotoh (1978) and Lin (1964) 
account for crystal interaction; but Gotoh investigated a 
formally ductile material (one with five independent slip 
systems) and did not investigate development of pre- 
ferred orientation, and because Lin's analysis con- 
sidered only infinitesimal strains, it pertains to neither 
large strains nor development of preferred orientation. 
Numerical models by Etchecopar (1977) and Etchecopar 

& Vasseur (1987) allow some crystal interaction, but 
require homogeneous strain within crystals and do not 
maintain continuity at grain boundaries. The finite- 
element models described below preserve grain- 
boundary continuity and model the effect of crystal 
interactions on preferred orientation for large, geo- 
logically significant strains. 

A material that is non-ductile in the yon Mises sense 
was chosen for study because it represents an extreme 
case of plastic anisotropy. I shall review the implications 
and limitations of the yon Mises ductility criterion and 
demonstrate that, for plane strain, two orthogonal slip 
systems do not allow ductility in this restricted sense. I 
then show that a material with identical orthogonal slip 
systems will not experience crystal lattice rotation when 
subjected to an irrotational strain history. The finite- 
element model is then discussed, followed by discussion 
of the results. 

VON MISES DUCTILITY 

For a polycrystalline material to be ductile in the sense 
defined by yon Mises (1928), its constituent crystals must 
be able to undergo an arbitrary plastic strain (Nicolas & 
Poirier 1976). This condition allows any state of plastic 
strain in a crystal to be accommodated by plastic strain in 
adjacent crystals. In the absence of this condition, distor- 
tion of a crystal by plastic strain cannot be wholly 
accommodated by plastic strain in adjacent crystals. 
This distortion must therefore be accommodated in part 
by elastic strain in adjacent crystals, except for special 
crystal shapes and strain geometries (Kooks & Canova 
1981). It is convenient in this paper to define formal 
ductility in the restricted sense defined by yon Mises. 
The von Mises ductility criterion is useful in distinguish- 
ing ductile from brittle materials; however some 
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formally non-ductile materials (e.g. calcite at low 
temperature and shear stress too low for r glide) undergo 
large strains by inhomogeneous deformation at the 
crystal level, without brittle failure. For this reason, the 
formal von Mises definition of ductility is distinguished 
from the common observational definition. 

Most rock-forming minerals are formally non-ductile 
at low temperature (Paterson 1969, Nicolas & Poirier 
1976). Even when they undergo large strains at higher 
temperature, their low symmetry dictates that most 
plastic strain will occur on one or a few slip systems, at 
low resolved shear stress. Strain components not 
allowed by these slip systems are accommodated by 
inhomogeneous deformation and elastic strain in the 
finite-element models described in this paper. In real 
crystals, at metamorphic or higher temperatures, these 
strains are also accommodated by glide on slip systems 
requiring higher resolved shear stress, and by other 
inelastic processes such as climb, Nabarro-Herring 
creep and Coble creep. 

Conditions for  formal (yon Mises) ductility 

It was shown by yon Mises (1928) and Bishop (1953) 
that a crystalline material must have five independent 
slip systems to experience an arbitrary infinitesimal 
strain increment by slip, and this criterion defines formal 
ductility. A slip system is defined by a family of parallel 
crystallographic planes on which slip occurs, and by the 
direction of slip on those planes (Nicolas & Poirier 
1976). Groves & Kelly (1963) defined a slip system by 
the unit vector n normal to the slip plane: 

n = nxi + nyj + nzk (1) 

and the unit vector h in the direction of the Burgers 
vector: 

b = bxi + b j + bzk, (2) 

where the x, y, z co-ordinate system is fixed in relation 
to the crystallographic co-ordinate system (Tharp 
1985a). The infinitesimal strain components caused by a 
single slip system are: 

ex = anxbx ey = Ctnyby gz = anzb, 

e~y = (al2)(nxby + nybx) (3) 
ex: = (a/2)(nxbz + nzb~) 

ey z = (a/2)(nyb: + nzby), 

where a is shear strain in the plane of the slip system. 
Groves & Kelly (1963) developed a procedure for 
demonstrating independence of five slip systems and 
therefore ductility for infinitesimal strain. Magnitude 
and sign of a are arbitrary for the ductility analysis as 
long as magnitude is not zero. Although there are six 
strain components, only five are independent, because 
for deformation by slip alone, the sum of the normal 
strains is zero; i.e. volume is constant. This inde- 
pendence of five slip systems is established if the deter- 
minant of a 5 x 5 matrix of strain components is non- 
zero (Groves & Kelly 1963). 

Conditions for  formal  ductility in plane strain 

The two-dimensional, plane strain ductility condition 
is derived from the general three-dimensional condition. 
A slip system is defined for the two-dimensional case 
(Fig. 1) by a unit vector n normal to the slip plane and a 
unit vector b parallel to the Burgers vector: 

n = nxi + n j = - s i n 0 i +  cos0j  (4) 
b =  b ~ i + b ~  = c o s 0 i + s i n 0 j ,  

where 0 is the counterclockwise angle between the x-axis 
and the slip plane (Fig. 1). If a is set to 1.0, for con- 
venience, the three non-zero strain components are: 

e~=nxb~ = - s inOcosO 

ey = nyby = cos 0 sin 0 
exy = (l/2)(nxby + nybx) = (1/2)(- sin 2 0 + cos 2 0). 

Y 

~ X  

Fig. 1. Definition of slip system geometry for plane strain; n is the 
normal to the slip plane and b is the direction of slip. 

For strain by slip alone ex + ey = 0, and therefore 
there are only two independent strains. Thus, the 5 x 5 
matrix for the three-dimensional case is reduced to the 
2 x 2 matrix [A]: 

[A] 

_- 2 sin Ol cos Oi (1/2)(cos 20l - sin 2 Ol)] 
= 2 sin 02 cos 02 (l/2)(cos 2 02 sin 2 02)J ' 

where 01 and 02 pertain to two different slip systems. The 
determinant of [A ] is: 

Det [A] = - sin 01 cos 01(cos 2 02 - sin 2 02) 
+ sin 02 cos 02(cos 2 0I - sin 2 00. 

The conditions for which two slip systems fail to 
provide ductility are found by setting Det [,4] to zero. 
This relationship is satisfied if 0t = 02 + 90", i.e. the 
two slip systems are orthogonal. Thus, a material with 
only two orthogonal slip systems is formally non-ductile. 
That such a material is non-ductile is easily seen. For 
orthogonal slip systems parallel to the x and y co- 
ordinate axes exy can be accommodated, but clearly no 
slip on either slip system can produce ex or ey. 
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ROTATION 

It can also be demonstrated that any stress applied to 
identical orthogonal slip systems will produce strain 
without crystal lattice rotation. Figure 2 shows two 
orthogonal slip systems with normals and slip directions 
defined so that for any state of stress the crystal lattice on 
the +n side of the slip plane will move in the +b 
direction for both slip systems or in the - b  direction for 
both slip systems. Strains in x - y  co-ordinates for shear 
strain a on a slip system are defined by equations (1)--(3). 
For slip system 1, 

n l = - s i n 0 i + c o s O j  
bt = cos Oi + sin 0j. 

Substitution of the vector coefficients into equations 
(3) yields, for the non-zero strain components: 

G ~ = - a s i n 0 c o s 0  
eyl = a cos 0 sin 0 

e~yl = (a/2)(-  sin 2 0 + cos 2 0). 

For slip system 2, 

n2 = cos 0i + sin 0j 
b2 = - sin 0i + cos 0j. 

Substitution of the vector coefficients for slip system 2 
into equations (3) yields the same strain components 
produced by slip system 1. Slip on any slip system 
produces simple shear. Although the crystal lattice is not 
rotated by simple shear, simple shear is the sum of a pure 
shear (shear strain) and a rotation of the mass of the 
crystal. This rotation coxy caused by the slip (Lister et al. 
1978, Van Houtte & Wagner 1985) is: 

wxy = (ct/2)(nxby - nrb~ ). (5) 

Y 

~ X  

Fig. 2. Normal vectors n~ and n2 and slip direction vectors bt and b2 for 
orthogonal slip systems. 

For slip system 1, ~Oxy = - a /2  and for slip system 2, 
Wxy = 0./2. That is, for a given a, the two orthogonal 
systems produce opposite rotations of equal magnitude. 
For static equilibrium, shear stress must always be equal 
on orthogonal planes (Timoshenko & Goodier 1970, p. 
5). Because shear stress on the identical, orthogonal slip 
systems is equal, they must always experience the same 
strain a, causing rotations to cancel. 

If the deformation gradient (Van Houtte & Wagner 
1985) imposed on a crystal is irrotationai, (i.e. strains 
without rigid-body rotations), the crystal mass must be 
free of rotation following slip. This requires an addi- 
tional rigid-body rotation of the crystal that is equal in 
magnitude and opposite in direction to the rotation 
described above that results directly from slip (Lister et 
al. 1978, Van Houtte & Wagner 1985). This compen- 
sating rotation rotates the crystal lattice and is the cause 
of the preferred orientation computed for non-inter- 
acting crystal models. Because the rotations O~xy for the 
two orthogonal slip systems cancel, the compensating 
lattice rotations also cancel. Thus, for identical, 
orthogonal slip systems, net lattice rotations are zero for 
non-interacting crystals undergoing homogeneous, irro- 
tational strain. For non-interacting crystals of this type, 
any pre-existing distribution of crystal orientations is 
therefore stable and no new preferred orientation will 
develop. 

FINITE-ELEMENT MODELS 

The two-dimensional plane strain program (Tharp 
1985b) employs 8-node isoparametric elements. Dis- 
placement within an element and on its boundaries is 
quadratic, as defined by displacement of the nodes. This 
guarantees strain compatibility both within elements 
and at boundaries between elements. Orthogonal slip 
systems in each element are modeled by a plastic yield 
condition which specifies that shear stress cannot exceed 
the yield stress rf on planes of a particular orientation. 
Because rxy = ~'yx (Timoshenko & Goodier 1970, p. 5), 
this condition applies to an orthogonal plane as well. 
Thus, specification of one slip system in the finite- 
element model automatically engenders a second, 
orthogonal slip system with identical properties. 
Identical orthogonal slip systems defined in this way are 
not only ideal for the purposes of the present study, but 
they also probably represent the only slip system 
configuration definable in a standard finite-element pro- 
gram. Definition of a single slip system or of non-ortho- 
gonal slip systems requires special finite-element formu- 
lations (Gotoh 1978, Dafalias 1984, Needleman et al. 

1985). 
Poisson's ratio is 0.2 in all analyses and, unless other- 

wise stated, r//G = 2.4 x 10 -3 ,  where G is shear 
modulus. The orthotropic elastic constants (Zienkiewicz 
1971, p. 55) of each element are referred to co-ordinates 
x '  and y',  parallel and perpendicular to the slip plane. 
Young's modulus E' and Poisson's ratio v '  are the same 
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in the x' and y' directions, and shear modulus G' is 
initially set equal to the isotropic elastic shear modulus 
G = E'/2(1 + v'), making the element isotropic in the 
elastic range. 

Vertical displacements are imposed on the upper and 
lower boundaries of the mesh in 10 equal increments, 
with total shortening in the vertical direction of 40% in 
all runs. Because horizontal displacements are imposed 
to preserve constant volume, the resulting strain is pure 
shear. For each displacement increment, element con- 
stitutive properties are adjusted iteratively until each 
plastically deformed element satisfies the yield condition 
at the Gauss points. When yield stress on the slip plane 
is exceeded at a Gauss point, the effective shear modulus 
G' is reduced for the next iteration to a value that would 
make shear stress equal to rf for the computed shear 
strain on the slip plane. Only a few iterations are 
generally required to closely satisfy the yield condition. 

Slip system (crystal lattice) orientation is initially con- 
stant within each element• Before each displacement 
increment the nodal co-ordinates are adjusted to reflect 
cumulative displacement. New slip system orientations 
are also calculated at each Gauss point to reflect the 
change in attitude caused by rotation. In this way, large 
finite strains and rotations of elements and slip systems 
accumulate in a series of smaller increments. 

The finite-element meshes are initially square and 
composed of 36 elements (e.g. Fig. 3). The line segments 
shown in each element represent the attitude of one of 
the slip planes at each of the nine Gauss points used in 
the finite-element calculations; the other slip plane is 
always orthogonal to the one shown. Only one of the 
orthogonal slip planes is depicted, to make the sense of 
rotation between initial and final states more apparent. 

In the finite-element models each element is con- 
sidered a single crystal. Initial slip system orientations 
were produced by a random number generator, but 
orientations were restricted in some cases to produce an 
initial preferred orientation. Because imposed dis- 
placements are symmetrical about the vertical axis (shor- 
tening direction), the sets of orientations to be used were 
screened to ensure that slip systems of low (or high) dip 
have no strong preferred dip orientation to either the 
right or left of vertical. 

DEFORMATION BEHAVIOR 

Figures 3 and 4 show the undeformed mesh, deformed 
mesh and final stress state for an initially random dis- 
tribution of slip system orientations (Fig. 3), and for slip 
systems with initial preferred orientations nearly 
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Fig. 3. (a) Undeformed finite-element mesh showing slip plane orientations at Gauss points. Slip plane orientations are 
random (uniformly distributed over all orientations) but only the shallow-dipping slip plane (-  45 ° to +45 °) is shown for each 
orthogonal pair. (b) Deformed mesh after 40% strain. (c) Stress state after 40% strain; bars with arrow heads indicate 

tension, solid bars compression, length of bar is proportional to stress magnitude. 
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Fig. 4. (a) Undeformed finite-clement mesh. The mean dip for the shallow-clipping slip plane of the orthogonal pairs is 5 °, 
and thus the mean dip of the more steeply dipping of the pairs is 85 °. Only the shallow-dipping slip plane is shown. (b) 
Deformed mesh after 40% strain. (c) Stress state after 40% strain; bars with arrow heads indicate tension, solid bars 

compression, length of bar is proportional to stress magnitude. 

horizontal and vertical (Fig. 4). In Fig. 4, the mean abso- 
lute value of inclination from the horizontal of the flatter- 
dipping slip planes was initially 5°; therefore, the mean 
absolute value of inclination from the horizontal of the 
steeper dipping of each orthogonal pair was 85 °. 
Although the mean absolute value of inclinations is 5 ° for 
the flatter dipping set, the orientations of this set cluster 
about zero, reflecting the equality of dips to left (+) and 
right ( - ) .  The orientations of the steeper dipping set 
cluster about 90°. Only the initially flatter dipping of each 
pair of slip planes is shown in Figs. 3 and 4. 

Strain is extremely inhomogeneous (Figs. 3 and 4), as 
expected in deformation of a formally non-ductile 
material. Crystal lattices rotate both clockwise and 
counterclockwise, locally by large angles. Final stress 
states (Figs. 3c and 4c) are also inhomogeneous, particu- 
larly in the center of the mesh, where boundary con- 
straint effects are less important. Principal stress 
directions in individual crystals depart significantly from 
the horizontal tension and vertical compression of a 
homogeneous, isotropic material. 

Deformation in models with orthogonal slip systems is 
both elastic and plastic, with inhomogeneous distribu- 
tion of the two mechanisms between and within crystals. 

Orientation of an element and the stress state imposed 
by surrounding elements may dictate that parts of an 
element deform almost entirely by plastic strain, while 
elastic strain dominates in other parts. At any location, 
shear strain parallel to slip systems will be almost entirely 
plastic, because for rf/G = 2.4 x 10 -3, maximum elastic 
shear strain in those orientations is 2.4 x 10 -3, very 
small relative to 40% compression. However, because 
normal stresses parallel or perpendicular to the slip 
systems may become arbitrarily high without triggering 
slip, possible elastic strains in those two directions are 
unlimited. As will be discussed in a later paper, for large 
strain in these finite-element models, approximately 1/4 
of total strain is elastic. This allows convergence and 
divergence of slip plane orientations within a crystal, 
and length change parallel to slip planes; phenomena 
that in real crystals would be partially accommodated by 
kinking, minor slip on slip systems with higher critical 
resolved shear stress, or by non-plastic deformation 
mechanisms. 

Figures 3 and 4 illustrate some important features of 
finite strain with identical, orthogonal slip systems. 
Because homogeneous strain does not cause crystal 
lattice rotation, the rotations reflect local rigid-body 
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rotation caused by inhomogeneous deformation. This is 
well illustrated in the lowest row of elements in Fig. 4(b), 
where two elements have experienced a large com- 
ponent of simple shear. This could be accommodated by 
glide on the nearly horizontal slip plane without net 
lattice rotation. However, because the two orthogonal 
slip systems in each element are identical and experience 
the same shear stress, they must also undergo identical 
slip. As established above, the irrotational component 
of deformation produces no lattice rotation. The 
observed lattice rotation therefore results from the rigid- 
body rotational component of the simple shear to which 
the elements have been subjected. Because simple shear 
has rotated these slip planes into orientations favorable 
to slip (oblique to principal strains in the body as a 
whole), later strain has allowed flattening of these 
elements without significant additional rotation. This 
late strain episode is indicated by the small magnitude of 
stresses in the final state (Fig. 4c). These crystals would, 
of course, behave differently if they had only a single slip 
system rather than orthogonal slip systems. The 
observed simple shear would result in lattice rotation if 
the high angle slip plane alone were present, but no 
lattice rotation would occur if the nearly horizontal slip 
plane alone were present. 

Although deformational behavior is strongly a func- 
tion of the slip and twin systems available in a particular 
mineral, the finite-element models share a number of 
characteristics with naturally and experimentally 
deformed monomineralic rocks. Inhomogeneity of 
strain is difficult to document in rocks because grains in 
the undeformed state differ in size and shape; however, 
the presence of undeformed or weakly deformed quartz 
grains in the midst of strongly deformed grains has been 
noted by Tullis et al. (1973), Mancktelow (1981) and 
Law (1986). As in the finite-element models, the weakly 
deformed grains are unfavorably oriented for slip. It is 
also noted that such undeformed grains are observed 
only where the strain history is irrotational. This suggests 
that for deformation gradients (Van Houtte & Wagner 
1985) with a large component of rigid-body rotation, 
unfavorably oriented grains are eventually rotated into 
orientations favorable for slip. 

Inhomogeneous deformation is also common within 
individual grains in naturally and experimentally 
deformed rock. Undulatory extinction grades into 
optically distinguishable subgrains with orientation mis- 
matches of up to 10 ° or 15 °. At higher strains, original 
grains may be surrounded by subgrains, with misorienta- 
tion increasing away from the center of the original grain 
(Urai et al. 1986). With sufficient strain, this progressive 
rotation of subgrains produces high-angle grain 
boundaries and a 'recrystallized' texture. Similar rota- 
tions occur in the finite-element models, but the rotation 
gradients are smooth rather than being expressed as 
discrete rotations across grain or subgrain boundaries, 
and the boundaries of original crystals remain known, 
rather than being lost in the mass of small reoriented 
grains between the remnants of original grains. 

PREFERRED ORIENTATION OF SLIP SYSTEMS 

Figure 5 shows distributions of initial and final slip 
plane orientations at Gauss points and net change in 
orientation for models with different initial slip system 
orientations. The histograms are means of slip plane 
histograms for three separate finite-element models, 
except the histogram for initial mean orientations of 20 ° 
and 70 °, which was calculated from six separate models. 
For all initial orientations, the result of 40% vertical 
shortening is an increase in slip planes oriented 45 ° from 
the direction (horizontal) of maximum extension. This 
orientation produces the highest resolved shear stress on 
the orthogonal slip planes and is, therefore, the orienta- 
tion most favorable for slip. The peak at 45 ° is subdued, 
but it is also found in each of the many finite-element 
models individually. 

The 45 ° preferred orientation means that the two slip 
systems tend to be symmetrically disposed about the 
shortening direction, as would be expected for a non- 
interacting crystal model for lattice rotation. As shown 
above, however, for identical, orthogonal slip systems 
no crystal lattice rotation would occur if the crystals were 
non-interacting. 

The preferred orientation observed in the finite- 
element models must therefore be caused by crystal 
interaction. Although crystal interactions are not easily 
understood, the following explanation seems consistent 
with observed deformation in many individual elements 
and groups of elements. In the finite-element models, 
both plastic strains and local rigid-body rotations are 
large. A crystal, or part of a crystal, with orientation 
unfavorable to slip in the local stress field is required by 
grain-boundary continuity to rotate rigidly as adjacent 
crystals deform. When it has rotated into a position 
favorable to slip, shear occurs. Because boundary dis- 
placements imposed by strain in neighboring crystals can 
then be accommodated by slip on the orthogonal slip 
systems rather than by rotation, and because slip does 
not produce rotation in these models, the rate of rigid- 
body rotation decreases. Therefore, orientations favor- 
able to shear tend to be most stable, and are preserved. 

Although persistence of orientations favorable to 
shear is attributable to the existence of orthogonal slip 
systems, other aspects of the suggested model should 
apply to other materials as well. When a crystal's orienta- 
tion does not allow slip in the local stress field, compati- 
bility with neighboring crystals can be maintained, in 
part, by local rigid-body rotation. Because non-slip 
orientations experience rigid-body rotation in place of 
strain, their orientation is unstable. The rotations 
imposed are unrelated to crystallographic orientation, 
but because only non-slipping crystals are required to 
rotate in this way to maintain strain compatibility, this 
behavior will produce a net rotation toward orientations 
favorable to slip. This process should occur to varying 
degrees in many, and perhaps all, polycrystalline 
materials, although its effect will be partially masked in 
most by lattice rotations associated with slip. 
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Fig. 5. Histograms of initial and final slip system orientations and difference between initial and final. Angles are measured 
from horizontal (extension axis) and numbers of orientations N are normalized to sum to 100 for initial and final states. 

For several reasons, rigid-body rotations may be 
smaller in the three-dimensional fabric of real materials 
than in the finite-element models. Each crystal would be 
bounded by more than four adjacent crystals, and the 
demands of compatibility with additional crystals 
decreases the probability of large rigid-body rotations. 
However, as seen in Figs. 3 and 4, large lattice rotations, 
even in the two-dimensional models, occur within 
crystals, frequently without significant rotation of the 
crystal as a whole. Rigid-body rotation would also be 
reduced by grain-boundary sliding, which does not occur 
in the finite-element models. By allowing slip across 
grain boundaries, this deformation mechanism allows 
individual crystals to behave more independently 
(Etchecopar 1977) and to conform more closely to 
models of preferred orientation based on non-interact- 
ing crystals. 

The finite-element models experience preferred 
orientation of slip planes 45 ° from the shortening 
direction (which is also 45 ° from the extension direction). 
This rotation is best quantified by considering the angle 
6 between a slip plane and this 45 ° orientation. The mean 
value for these angles will be called 6~ for initial orienta- 
tions and 6f for final orientations. Table 1 shows 6.  6/ 
SG l l :S-o 

and the difference 6i - 6/for different initial slip system 
orientations. The maximum possible 6 is 45 ° and it 
occurs for a vertical or horizontal slip plane. For a 
random distribution of slip system orientations, 6~ is half 
that value, or 22.5 ° . For mean slip plane angles 20 ° and 
70 ° from horizontal, 6i would ideally be 25 ° (45 ° minus 
20 ° or 70 ° minus 45°); 6is for models with mean slip plane 
orientations 15 ° and 75 ° from horizontal and 5 ° and 85 ° 
from horizontal are 30 ° and 40 °, respectively. The 6~s in 
Table 1 closely approximate these values. All configura- 
tions show a shift of slip planes toward the 45 ° maximum 
shear stress orientation (positive 6 i -  6f), with the 
greatest shift occurring in those models with the greatest 
initial departure from that orientation (Table 1). 

Table I. Initial (6i) and final (6/) mean slip plane orientations and 
differences 6i - 6/between initial and final states for finite-element 

models. Angles 6~ and 6/are defined in the text 

Initial slip plane orientations 6~ 6 /  6~ - 6 r 

Random 22.5 19.3 3.2 
20" and 70" from horizontal 25.0 19.9 5. I 
15" and 75" from horizontal 30.0 19.2 10.8 
5= and 85" from horizontal 40.0 18.7 21.3 
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The final angle 6f is remarkably similar for all initial 
orientations, as are the final orientation distributions 
shown in Fig. 5. Net rotations are very small where 6~ is 
originally close to 6f (Table 1, random initial orienta- 
tion), suggesting that this final state represents a rela- 
tively stable orientation distribution. Higher strains 
would probably produce further rotation, but at a greatly 
reduced rate. Unfortunately, higher strains cannot be 
achieved in the present finite-element models without 
excessive element distortion. 

If the model proposed above is correct, rigid-body 
rotation toward the direction of maximum shear stress 
should be enhanced by a high degree of strength aniso- 
tropy. In the finite-element models, elastic strain serves 
to approximate all the secondary deformation 
mechanisms present in real crystals. For the low values 
of rf/G in the finite-element models the elastic strains are 

generally at least several orders of magnitude greater 
than would occur in real crystals. Therefore, in real 
crystals most of the strain accommodated elastically in 
the finite-element models would occur by secondary 
deformation mechanisms. These mechanisms include 
glide on slip systems with higher critical resolved shear 
stress (or lower slip rate at a given stress), dislocation 
climb, Nabarro-Herring and Coble creep. Although 
these mechanisms are very crudely represented by 
elastic behavior, a decrease in elastic shear modulus G 
(with constant shear strength on the orthogonal slip 
systems) reduces the dominance of the orthogonal slip 
systems and produces an effective decrease in strength 
anisotropy. The effect of this decrease in G is seen in Fig. 
6, which shows the initial slip plane configuration and 
deformed states for r / G  ranging from 2.4 x 10 -3 to 
2.4 x 10 -~. For rf/G less than 2.4 x 10 -3, the deformed 
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Fig. 6. Initial configuration and deformed configurations for finite.element models with different effective anisotropy. 
Mean initial dip is 15" for the flat-dipping slip planes (shown) and 85* for the orthogonal steeply dipping slip planes (not 
shown). All models start with the same slip plane orientation (a), but rf/G is 2.4 x 10 -3, 2.4 x 10-2and 2.4 x 10 -t for 

models producing the final deformed configurations shown in (b), (c) and (d), respectively. 
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state is almost identical to that for r / G  = 2.4 x 10 -3. 
For high r~/G, strength anisotropy is effectively low and, 
as expected, deformation is more homogeneous, with 
less pronounced rigid-body rotations. It is notable, how- 
ever, that even for r//G = 2.4 x 10 -1, the mean rota- 
tion of slip planes towards the orientation of maximum 
shear stress (6i - 6f) is 7.3", not much less than the 10.6 ° 
rotation for r~/G = 2.4 x 10 -3. 

Comparison with rotations for  a non-interacting crystal 
model 

Final preferred orientation in finite-element models 
with orthogonal slip systems is weak. The tendency for 
reorientation by mechanical interaction may itself be 
weak, and becatise the preferred orientation arises from 
rigid-body rotations imposed by surrounding crystals, 
this is intrinsically a 'noisy' process that weakens sharply 
defined preferred orientations. Because the proposed 
model suggests that rotation of non-slipping crystals into 
orientations favorable to slip should be expected in all 
plastically deforming polycrystaUine materials, it is 
desirable to assess the magnitude of this rotation relative 
to rotations in other types of crystals. Preferred orienta- 
tion development in the finite-element models is com- 
pared to that for a non-interacting crystal model by 
comparing rotations observed in the finite-element 
models with those predicted for non-interacting crystals 
with single slip systems. 

To determine rotations for non-interacting crystals, 
40% shortening was imposed on crystals with starting 
slip system orientations corresponding to each of the 
finite-element models. Each crystal was assumed to have 
only one slip system, rather than orthogonal systems 
(which produce no rotation). To represent the orienta- 
tions for both of an orthogonal pair of slip systems, the 
number of crystals in each run was double that for the 
corresponding finite-element model. Shortening strain 
was applied to each crystal in one thousand equal 
increments and slip required to produce the shortening 
was calculated. Incremental rotations were calculated 
by equation (5), with compensating lattice rotations 
being equal in magnitude but opposite in sign. 

For non-interacting crystals with one slip system, slip 
planes rotated into positions parallel to the extension 
direction (perpendicular to the imposed shortening 
direction). After 40% shortening, the mean rotation 
toward parallelism with the extension direction was 
between 25* and 28* for all initial orientation distribu- 
tions. In contrast, for finite-element models with an 
initially random fabric, the rotation toward the 
maximum shear stress orientation was only 3.2 ° (Table 
1). However, as also shown in Table 1, for a high degree 
of initial preferred orientation in the finite-element mod- 
els, rotation is nearly comparable in magnitude to the 
25-28* rotation for non-interacting crystals with single 
slip systems. The rotation toward orientations favorable 
to slip, observed in the finite-element models, would 
prevent achievement of total parallelism of slip systems, 
even in a material with only one slip system. In materials 
that more closely approximate the orthogonal slip 

system geometry, greater departures from the non- 
interacting crystal model might be expected. 

Other reports o f  preferred orientation influenced by 
crystal interaction 

It has been reported for metals (Asaro & Needleman 
1985), quartz (Tullis et al. 1973) and calcite (Wagner et 
al. 1982, Takeshita et al. 1987) that for a given strain, 
observed preferred orientations are weaker than 
predicted for non-interacting crystals. Of course, this 
implies only that strain is inhomogeneous, without 
implying anything about the nature of rotations that 
result from inhomogeneous deformation. A more 
systematic perturbation in preferred orientation fabric is 
caused by bending (curling) of calcite crystals that adopt 
a plane strain mode of deformation, even when overall 
deformation of the polycrystalline mass is axisymmetric 
(Van Houtte et al. 1984, Wenk 1985, Wenk et al. 1986a). 
This behavior, first described in metals (Hosford 1964), 
represents a departure from the homogeneous strain 
assumed in non-interacting crystal models. The plane 
strain deformation, taken alone, would result in incom- 
patibility of strain between crystals. The heterogeneous 
strains and rigid-body rotations that neutralize this 
incompatibility are analogous to those observed in the 
finite-element models. 

It has also been suggested by several investigators that 
inhomogeneous strain may cause rotation of slip planes 
into orientations favorable for slip. This has been 
observed in simulations of single crystal deformation in 
ductile metals where strain was localized in slip bands 
(Needleman et al. 1985, Asaro 1985, Lemonds et al. 
1985). Etchecopar (1974, 1977, 1984) and Etch¢copar & 
Vasseur (1987) numerically simulated deformation Of a 
material with one slip system. Their model allows 
homogeneous slip within crystals, grain-boundary 
sliding and rigid-body rotation of crystals. Large gaps 
and overlaps between adjacent crystals occur, but are 
minimized. Gapais & Cobbold (1987) have analyzed 
Etchecopar's data to show that for small strain, grain 
interaction causes slip planes to rotate into a weak 
preferred orientation 45 ° from the shortening direction. 
This is the same fabric described in this paper; but rather 
than strengthening as observed in the finite-element 
models, it weakens with increasing strain and does not 
persist to the large strains achieved in the finite-element 
models. Schmid & Casey (1986) also describe rotation 
into orientations favorable for slip in quartzite under- 
going simple shear. This departure from non-interacting 
crystal theory is attributed to heterogeneous deforma- 
tion or grain-boundary migration. Whether the pheno- 
mena described in these investigations are related to 
those described in this paper remains unclear. 

CONCLUSIONS 

In two-dimensional models, a material with two 
identical, orthogonal slip systems is non-ductile in the 
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formal  yon Mises  sense.  Iden t i ca l  slip mus t  occur  on the 
two sys tems,  and  no la t t ice  ro t a t ion  occurs  for  any  
i m posed  i r ro ta t iona l  s t rain.  These  charac te r i s t i cs  make  
this ma te r i a l  m o d e l  idea l  for  s tudy  o f  i n h o m o g e n e o u s  
d e f o r m a t i o n  and  crystal  la t t ice  ro t a t ion  caused  by  crysta l  
in te rac t ion  in p las t ica l ly  an i so t rop ic  minera ls .  

A s  shown,  d e f o r m a t i o n  is i n h o m o g e n e o u s  bo th  
be t ween  crysta ls  and  wi thin  crystals .  I n t e r ac t ion  
b e t w e e n  ne ighbor ing  crysta ls  resul ts  in ro ta t ion  of  slip 
p lanes  in to  the  p lane  o f  m a x i m u m  reso lved  shea r  stress 
(45 ° to axes o f  m a x i m u m  shor t en ing  and ex tens ion) .  
This  p r e f e r r e d  o r i en t a t i on  is r e l a t ive ly  weak  and it wou ld  
only  be e x p e c t e d  in minera l s  with s imi lar ,  near ly  
o r t hogona l  sl ip sys tems .  T h e  t e n d e n c y  for  ro ta t ion  of  
slip p l anes  in to  o r i en ta t ions  f avo rab le  to slip shou ld ,  
howeve r ,  be p re sen t  in o t h e r  minera ls .  I t  will w e a k e n  
p r e f e r r e d  o r i en ta t ions  p r e d i c t e d  by  non- in te rac t ing  
crysta l  t heo ry ,  pa r t i cu la r ly  where  the  s tab le  p r e f e r r e d  
o r i en t a t i on  is un favorab le  for  slip. 
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